
GraphQL
A query language
for your API

A success story?

Published at Kornel on Digital on 4/Nov/2019
By Facebook - https://github.com/facebook/graphql/blob/master/resources/GraphQL%20Logo.svg (BSD)

https://github.com/facebook/graphql/blob/master/resources/GraphQL%20Logo.svg

Published at Kornel on Digital

Agenda

APIs

• API Considerations

• RESTful API

GraphQL introduction

• Design principles

• REST / GraphQL comparision

• GraphQL features

• Non-functional considerations

GraphQL in practice

• Tools

• Demo

2

Published at Kornel on Digital 3

Published at Kornel on Digital

From REST to GraphQL

Published at Kornel on Digital 5

Published at Kornel on Digital

GraphQL - A query language for your API

GraphQL is a query language for APIs and a runtime for
fulfilling those queries with your existing data. GraphQL

provides a complete and understandable description of the
data in your API, gives clients the power to ask for exactly

what they need and nothing more, makes it easier to evolve
APIs over time, and enables powerful developer tools.

6

https://graphql.org/

https://graphql.org/

Published at Kornel on Digital

Design principles

A natural way for clients to describe data requirements for their
creation and manipulation of view hierarchiesHierarchical

Driven by the requirements of views and front-end engineersProduct centric

Every GraphQL server defines an application specific type systemStrong typing

Queries with field level granularity. Server returns exactly what a client
asks for and no more.Client-specified queries

The server's type system is queryable by the language itselfIntrospective

https://graphql.github.io/graphql-spec/

https://graphql.github.io/graphql-spec/

Published at Kornel on Digital 8

https://2018.stateofjs.com/data-layer/graphql/

https://2018.stateofjs.com/data-layer/graphql/

Published at Kornel on Digital

GraphQL vs REST

Published at Kornel on Digital

REST & GraphQL
R

ES
T

• Documentation per endpoint

• Endpoint per resource

• No formal schema definition

• HTTP verbs (GET, PUT, POST, ...)

• Interact with specific resources

• Client specifies the identity of the resource

• Server defined response

• Additional developer effort on data fetching

• Entire API can be versioned

G
ra

p
h

Q
L

• Self-documented via GraphQL introspection

• Endpoint per API

• Strongly typed

• Queries, mutations, subscriptions

• Interact with several resources (one operation)

• No need to specify the identity of the resource(s)

• Client defines the shape of the response

• Think less about data fetching („what” vs. „how”)

• Designed for API evolution

10

There is notable impact on (almost) every quality attributes when someone wants to move away from REST and introduce GraphQL

REST is an architectural style for designing
loosely coupled applications on HTTP

GraphQL is a query language and
a runtime for fulfilling the queries

Published at Kornel on Digital

REST and GraphQL comparision

REST GraphQL

Endpoints Endpoint per resource Endpoint per API

Schema, type
system

No formal definition by default, but many REST APIs
conform to a specification like OpenAPI, JSON schema, ...

Strongly typed by default

Data transfer HTTP HTTP is the most common choice, but it is up to the implementor (e.g. MQTT).

Semantics HTTP verbs (GET, PUT, POST, DELETE) Queries (data fetching) ,mutations (data manipulations), subscriptions

Payload Up to the implementor Typically JSON (compresses well with GZIP)

Errors HTTP status codes Response with error fields. No sense of overall, HTTP-level success or failure.

Parameters Query string parameters, HTTP request body Query parameters

Response Server-defined response Client defines the shape of the response

Subscriptions Not defined Supported since June 2018

Pagination Query string parameters GraphQL query parameters

Documentation Documentation per endpoint (e.g. OpenAPI) Self documented via the GraphQL introspection system

Versioning The entire API is versioned More granular versioning possible. Specific fields can be deprecated / rolled in.
Designed for API evolution.

Cachability HTTP caching Caching on client level, DB, memory. Client libraries like Apollo and Relay
provide caching mechanism

Security Cookies, HTTP basic auth, JWT, ... Not defined on spec level, but there are many ways (authorization through
context, schema/field level authorization, etc.)

11

Published at Kornel on Digital

Introducing GraphQL
by example

Published at Kornel on Digital

GraphQL demo application: Financial portfolio manager

13

Watchlist (stocks, etc.)

Manage my holdings

Show latest prices

Display live updates

Calculate market value

Day’s / total gain

Features

Published at Kornel on Digital

Financial portfolio manager – Data requirements

14

What are the
data requirements

of the UI?

Do we need the same granularity in
the results when the tradables or lots
are expanded / collapsed on the UI?

Published at Kornel on Digital

Financial portfolio manager - Dependencies

• Portfolio
• DB (lots, tradables)

• Live quotes
• Service-to-service call

• Remote data
provider service

What could be the
dependencies in a

potential
microservices solution

when resolving the
queries and mutations?

15

Do we need to call the Quote service or
the remote service when the tradables or
lots are expanded / collapsed on the UI?

Published at Kornel on Digital

GraphQL type system: Object types

16

GraphQL object type

Fields

Built-in scalar types
(String, Float, Int,
Boolean, ID)

An array of Lot
objects

Non-nullable fields
are represented with
an exclamation mark

Additional features of the type system: enums, interfaces, unions, input types

Published at Kornel on Digital

GraphQL type system: Query

Every GraphQL service has at least
one query type

A query type specifies an entry point
and a way for fetching data

You can ask for nested fields in the
return object

17

... the server must have a query type like this in the schema:

To serve a query operation like this

Published at Kornel on Digital

GraphQL type system: Mutation

A GraphQL schema has at least one
query type and it may or may not
have a mutation type

Mutations are used for modifying
server-side data

You can ask for nested fields in the
return object

18

... the server must have a mutation type like this in the schema:

To serve a mutation operation like this

Published at Kornel on Digital

A complete GraphQL schema

19

... continued:

Published at Kornel on Digital

GraphQL schema introspection system

• Ask a GraphQL schema for information about what types, queries, mutations and subscriptions it supports

• The GraphiQL in-browser client displays documentation by using the introspection system

20

Published at Kornel on Digital

D E M O

http://localhost:8080/graphql

Published at Kornel on Digital

GraphQL subscriptions (since 2018)

22

• You can use subscriptions to provide a more interactive UI
• E.g. chat, messaging, stock price live updates, ...

• Technical considerations

• Transport via websocket is the most popular

• GraphQL types and resolvers can be reused
• Limitations on file descriptors, memory, CPU
• Choose from polling, websocket, SSE, ... carefully

• The server needs to persist and re-evaluate the
query for potentially many subscribers

https://hackernoon.com/from-zero-to-graphql-subscriptions-416b9e0284f3

https://hackernoon.com/from-zero-to-graphql-subscriptions-416b9e0284f3
http://localhost:8080/graphql

Published at Kornel on Digital

What about the Non -Funct ional
Requirements (NFR)?

Published at Kornel on Digital 24

Published at Kornel on Digital

A few challenges related to NFRs...

Security

• Common security vulnerabilities (e.g. DDoS)

• GraphQL specific vulnerabilities

• Query cost/complexity -> query analysis and rate limiting

• Whitelist query patterns, use persisted queries

• Authentication & authorization (AAA)

• Authentication via non-GraphQL endpoints → Frontend has to speak both GraphQL and non GraphQL.

• Use pure GraphQL. Authentication via GraphQL itself. Use the context.

• Build on top of understood technologies like JWT or OAuth

Caching

• While REST uses transport level caching (web servers), it is not appliable for GraphQL

• Application level caching, query caching, client-side caching. Apollo and Relay provide client side caching OOB.

25

Published at Kornel on Digital

Tools , l ibrar ies

Published at Kornel on Digital

Tools, Libraries

• Any tool can be used that can set the following:

• HTTP verb (POST)

• URL of the GraphQL endpoint

• Content type header (application/json)

• Data sent (JSON)

• Javascript with fetch

• Application libraries e.g. Apollo

• GraphiQL: In-browser IDE

27

Published at Kornel on Digital

Apollo

• Apollo GraphQL client and view layer integration for popular frontend frameworks:
https://github.com/apollographql/apollo-client

• Apollo GraphQL server, that works with most Node.JS HTTP servers + serverless cloud frameworks:
https://github.com/apollographql/apollo-server

• Tools, utilities: schema generator, mocking, schema stitching, etc.: https://github.com/apollographql/graphql-tools

• Enterprise grade data graph platform built on open source Apollo: https://www.apollographql.com

• Probably the biggest GraphQL community with events, blogs, forums

• https://blog.apollographql.com/

28

https://www.apollographql.com/

https://github.com/apollographql/apollo-client
https://github.com/apollographql/apollo-server
https://github.com/apollographql/graphql-tools
https://www.apollographql.com/
https://blog.apollographql.com/
https://www.apollographql.com/

Published at Kornel on Digital

AWS AppSync

29

For AWS users and those who prefer managed service

• Managed service on AWS for building flexible GraphQL APIs

• Data sources and resolvers are used by AWS AppSync to
translate GraphQL requests and fetch information from the
underlying resources

https://aws.amazon.com/appsync/

https://aws.amazon.com/appsync/

Published at Kornel on Digital

graphql-java

• Java (server) implementation for GraphQL

• It just deals with executing queries. No HTTP server, etc.

• Exposing the API needs to be done with another tool

• A schema first tool for graphql-java: GraphQL Java Tools

• Hint
• Get started building a GraphQL Java microservice

using a contract first approach:

• GraphQL Java Spring Boot, or

• GraphQL light-4j

30

https://www.graphql-java.com/tutorials/getting-started-with-spring-boot/

Schema file

type Query {
...
}

Data fetchers

PortfolioFetcher
TradableFetcher

Type registry

Portfolio
Tradable
Lot

Wiring

PortfolioWiring
Tradable
Lot

Executable
schema

GraphQL
request
handler

Generate Register runtime wiring

Build

https://www.graphql-java.com/tutorials/getting-started-with-spring-boot/

Published at Kornel on Digital

Q U EST I O N S

